
Modeling in software engineering
and its advantages for developers

Table of Contents
Growing Challenges															 3

Introducing modeling and model-driven development						 4

Domain Specific Language (DSL)											 5

Meta-modeling and meta-metamodeling									 6

Model-driven architecture													 7

The realm of low-coding													 8

The process of modeling														 9

Model transformation														 10

How BlackBelt creates domain models?										 10

JUDO - BlackBelt’s project development philosophy							 11

Why modeling is useful for developers and business individuals?				 12

The advantages of modeling and MDA over traditional manual coding			 12

Welcome to BlackBelt, a professional application development company		 13

Growing challenges
In today’s world, software development is a key factor in the life of enterprises. It doesn’t matter if we’re talking about the
implementation of in-house workflows, the sales of SaaS (Software as a Service) or PaaS (Platforms as a Service) or any other
online solution, software engineering occupies a primary role within the company. Our world is approaching the trend of
Software Defined Everything (SDx), meaning that the software-driven operation of certain hardware or other manual processes
are becoming more and more essential and companies are being forced to face the demanding challenge of automation.
Prepared and innovative competitors who quickly adopter high-tech solutions can seriously impact the customer base of
other companies in the same niche. Those enterprises that don’t follow the trends of software engineering can easily lag
behind the competition and lose a significant part from their market share.

Unfortunately, traditional manual coding consumes too much time from developers’ working hours and the risk of
unwanted human error remains quite high. This results in slow project development, lagging communication within
the company and unmet deadlines. There is an increasing requirement for an innovative solution, one which is able to
speed up the pace of the whole software engineering process without letting the outcome lose quality.

To continue down this line even further, often business analysts or professionals, who have a say in the technological
outcome of the development, lack the proper coding knowledge to transparently and holistically explain their
expectations and requirements to the developers.

As a result, even the best programmers sometimes face situations when they misunderstand
requests and the finished product does not fully align with the original design.

These are two major problems in software development. However, this is the point where
modeling, model-driven architectures, and low-coding come into the picture and save the day!

Introducing modeling and
model-driven development
Let’s first lay the foundations of this topic before we dive deeper into it. A
model is a representation of a system that will be developed. Its purpose is to
assist developers and professionals from the business domain to visualize the
new system in a simplified way. The model is also used to reprioritise certain
aspects of the complete system. As a result, those involved can consider the most
significant and relevant questions about the system’s logic.

In other words, a model is an external and explicit representation of reality, one
that the people aim to redesign, transform or explore. The aim of modeling is to put
businesses and developers on the same page and to answer all questions that may
occur during the meetings and negotiations.

Even though developers are highly skilled in programming languages, they may
not fully understand the objectives of the business domain during discussions.
Consequently, they will need a common modeling language to facilitate fluent and
smooth communication between the two parties for the successful implementation of
the project and the viability of the deadline.

Domain Specific
Languages (DSL)

Domain Specific Languages is a subset of languages that can
be used between the business domain and the developers to
communicate with each other about the specifications of the
project. It is basically a computer language, that is specialized for
a certain domain, like HTML for websites. Using DSLs instead of
the generally used language of the developers is advantageous
in modeling, because this way domain experts can understand,
validate, or modify the system. Due to their limited scope, they
are easier to learn. As a result of utilizing DSL in modeling, the
amalgamation of business and IT knowledge will finally lead to a
complete IT system.

These modeling languages are only able to describe a narrow
world, however it is in a lot more detailed and punctual
manner. If those involved can successfully work together to
determine the details, idioms and requirements of the system,
then the developers are able to write source codes with their
utilization.

Meta-modeling and
meta-metamodeling

After covering the topic of models and DSL, we need to talk about meta-modeling and meta-
metamodeling. The word “meta” means beyond or above, therefore a meta-model is a model
of a model. However, it is important to note that a meta-model is not a simplified or aggregated
view of the previous model. It is a model, that uses a different level of abstraction to examine
and make statements about the model.

The language that is necessary for the definition of the meta-model is called meta-metamodel.
It is significant to mention that the distinction of meta-model and meta-metamodel is a
man-made concept, one which was invented to better understand the language and its
specifications. For instance, there are programming languages, like Lisp, where there is no
distinction between code and data, so modeling is not possible.

The usual process of model construction first requires building the meta-model which can only
then be used to build instance models.

To create successful DSL meta-models, such an environment is necessary that can be written in
a DSL language, which again needs a level of abstraction or language syntax that we can use to
construct the DSL.

You are at a classical music concert, where the pianist is playing a
beautiful song on the piano. To write the song down the artist uses musical
notation, the language of the notes. Apart from this, he/she will need

an environment, in which these note can be properly understood and
described. This is the system of the musical notes. When these are all done,
the beautiful piano song can be passed on to other artists to play.

M1 MODELS

M2 METAMODELS

M3 META-METAMODEL

M0
REAL-
WORLD
THINGS

AB
SR

AC
TI

O
N

S

REPRESENT

Defines Defines

Defines Defines

Meta-
metamodel

Defines

Metamodel 1 Metamodel m

Model 11 Model 12

Model 1p

Model m1 Model m2

Model mn

Let’s look at
an example

Source: www.jot.fm

DI
RE

CT
OR

Y

 P
ERVASIVE SERVICES SECURITY EVENTS TRANSACTIONS JAVA

 W
EB

 S
ER

VI
CE

S
 COBRA XM

I/XM
L .NET

UML

M
O F C W M

Model Driven
Architecture

Finance

E-Commerce

Telecom

HealthCare

More...

Transportation

Space

Manufacturing

Model-driven
architecture

Let’s examine this a little bit further. Model-driven architecture (MDA) is a system
that is created using generalized models written in the modeling language. Its
objective is to provide guidelines for structuring software specifications. It effectively
separates the specification of a designed system’s functionality from the underlying
platform technology, as a result, developers and business professionals can observe
its progress, any possible inconsistencies, errors or warning signs together.

With the use of a model-driven architecture, people working on the same project
can envisage the platform-independent system in order to realize the functional
requirements and to see whether the logic will survive the execution process.

By having distance from platform-specific requirements, those in the business
domain and those in the IT Department can successfully work together to achieve
the ultimate goal of the project without unfilled gaps or errors, using a method that
is understandable for both parties.

Source: www.omg.org

The realm of
low-coding

Even though we have looked at a software engineering solution that facilitates
the cooperation between the business domain and developers and found a
solution to one of the most significant programming problems, there is still
a need to address the question of how to increase the quantity of the output
without quality loss.

Low-coding relieves companies from the burden of constant digital
transformations. Low-coding is a solution where business professionals and
programmers can work together to compile a fully functional web or mobile-
friendly web application using pre-made elements. Usually, low-coding
platforms are visual solutions that enable the individuals working on the project
to drag-and-drop the chosen element from a library into the model without
having to stress about codes.

It is a development platform on an abstract level that uses a DSL to deliver a
meta-model to the end-user. Therefore, it limits its usability, for instance for
the planning of databases, business workflows, user interface, or other web
applications. By using this approach, development time can be seriously cut,
the amount of output can be increased. Moreover, the possibility of human
error is significantly decreased.

The utilization of low-coding is beneficial for companies because even
business managers can take a look into the workflow and suggest
modifications, even if they do not have any programming knowledge. At the
same time, a solid SQL knowledge is enough from the developers who are able
to deploy the built application into the company’s infrastructure. Low-coding
apps are highly customizable, they enable endless branding, integration, and
refactoring.

With the help of this technology, enterprises are able to distinguish
themselves from the rest of the pack, get ahead of the customer
expectation curve, introduce brand new and disruptive products, and
last but not least, rapidly engage and respond to customer or in-house
requests across any platform.

We will talk about low-coding in some more detail when we elaborate on
BlackBelt’s software engineering technology a little later in this book.

Let’s talk about modeling space. A modeling space is an
architecture defined by the meta-model. At its highest
level of abstraction, M3, you’ll find the Meta Object Facility
(MOF). MOF is a standard type system for model-driven
engineering. Its aim is to provide an entity system in the
Common Object Request Broker Architecture (CORBA),
and a set of interfaces, that is used to manipulate and
create certain types.

MOF is a section of the Unified Modeling Language (UML)
standard, where we can define the modeling language.
However, the M3 MOF layer is independent from the UML.
The UML is placed on the M2 level, where we can put our
own model. This model will contain those entities that we
want to represent when the software is running.

This is what a common meta-modeling environment looks
like. It consists of four layers. The first layer, the M0 level,
is where you will find run-time instances that are used to
describe models that represent things from the real world.
The second layer, the M1 level, contains the model. The
next layer is M2. It is the level that consists of meta-models
and UML, where you would define the functionalities of
the model in the previous layer. Finally, the M3 level is the
realm of the meta-metamodels, a language that we can
use to draw up and define the models, the MOF. Source: www.jot.fm

The process of
modeling

The image above shows two
parallel, but equal meta-level
descriptors. At the top, we find
MOF on the M3 level, with the
MOF library. As MOF modeling
spaces use XML to share their
metadata, we can include
another space that defines XML.
The EBNF (Extended Backus-
Naur form) space is another
type of modeling space which is
visible on the left-hand side on
the image. The EBNF space also
has a layered structure, although
this organization is defined by
syntax, not semantics. The EBNF
is the metamodel which defines
a Java program. Then, it uses the
Java program to describe what
the entities will look like.

In order to write these meta-
model elements, and to use and
deploy low-coding platforms, we
need to provide interoperability
between each meta-layer.
This interoperability makes it
possible to generate newer and
newer models with the help of
model conversions.

M1

M2

M3

M0

MOF

UML ODM

UML model
of Java

grammar

UML model
of Java

program

ODM model
of Java

program

ODM model
of wind, fire

earth and
water

La
ye

rs
 fr

om
 th

e
po

in
t o

f v
ie

w
 o

f M
O

F
sp

ac
e

EB
NF

 sp
ac

e

Java
program

Java
grammarEBNF

MOF space

Model transformation Model transformations are an automatized way of creating
and modifying models. Therefore, we can save energy and
time, while we decrease the number of possible errors. Model
transformations are about creating interoperability between
to meta-models.

UML is not able to describe these modeling structures in a
generalized way, so we need model transformations. Why? To
answer this question, first we need to know about semantics.

Semantics defines, in a methodological manner, the way
a computer follows the programs to be executed in a
specific language. In order to express our train of thought
and expectations in UML, we should be able to convey
semantic content. However, semantics do not have such

capabilities. UML is not for execution, but for modeling, thus
its element sequence is not executable. This means that
UML encompasses different abstractions and specification
techniques, and if we want to use them to deploy a functional
system, then we will need to work with an extended, special
version of UML called FUML.

FUML, or Functional UML, is a subset of UML, which contains
the typical structural modeling constructs, like enumerations,
data types, associations, and classes. It is also able to model
behavior. As a result, a model that has been constructed in
FUML is just as executable as a program written with the use of
a traditional programming language.

How BlackBelt
creates domain

models?

To begin with, we create business terminology where we
record the concepts and the relations between them. Then,
we define them using the EMF/Ecore pair. EMF stands for
Eclipse Modeling Framework. EMF provides the tools and
runtime support to create a set of Java classes using a model
specification defined in XML. Ecore is the heart of this EMF
architecture. It is the second version of a low-coding platform,
and it is the MOF layer of the EMF. We use its M3 layer to define
modeling languages, and we use the Epsilon Transformation
Language to transform different models.

Then on the next level, with the use of a graphical modeling
tool, we define the outlook and UI of the model. For this
process we use Eclipse’s Sirius modeling tool. For the
representation, we use displayed elements, shapes, colors
and fonts to describe the model. Finally, with the utilization of
model driven tools, we can generate, transform, contrast and
validate these elements.

BlackBelt’s project
development philosophy

BlackBelt is a software engineering company, which aims to lift
the burden of development from their clients’ shoulders. We
will talk about the company in more detail in the last chapter of
this book. At this point, we would like to introduce the unique
project development approach of BlackBelt that can help all
enterprises and developers who are interested in outsourcing
their applications’ development.

JUDO is a modeling environment and platform defined and
invented by BlackBelt. It is the company’s digital business
platform serving business objectives. It combines the power of
three great modeling surfaces that the company uses to generate
more advanced and more modern application platforms.

The software engineering process at BlackBelt looks as follows:

Ideation Prototype Test Iteration Coding Publishing

By using JUDO, clients can have an insight into the
development process while also being able to test the
system from time to time. As a result, any new concepts
which alter the system from the original concept are
feasible due to the fact that JUDO allows immediate
modifications. This solution makes the job of the client
and the developers easier, as the client can take a look at
the software before the finished end-result, therefore the
high costs of modifying a complete project can be totally
avoided.

With the help of JUDO’s low-code platform, it is faster
and easier than ever before to generate prototypes and
models about the new software. Clients no longer need to
worry about stressful and overcomplicated negotiations
with drafts drawn on whiteboards or on PowerPoint.
Sketching the software’s model through JUDO is possible
in the blink of an eye.

Low-coding makes the development process a lot faster,
as BlackBelt programmers are working with flawless
pre-written codes that match each client’s expectations.
As a result of this innovative technology, clients can see
their idea’s prototype within a week. At the same time,
developing a complete application is possible within
several weeks instead of an ever extending period of
time.

BlackBelt has the technology and pre-written code
that can be used to fill in any prior gaps in systems or
environments. Using this highly iterative solution, any
app developed by BlackBelt can fit into a company’s
existing infrastructure.

The advantages of modeling and MDA over traditional
manual coding:

Systems can be specified independently from the supporting platform

Provides the means to specify the best supporting platform for the app

Enables the transformation of the software from one platform to another

Helps to unravel system and environment requirements

Uncovers hidden misunderstandings and undetermined factors

Facilitates seamless communication between developers and business
individuals

Business analysts can finally have an insight into the artifacts and models
without having programming knowledge

With the use of model transformation, it is easy to convert one model into
another

Empowers individuals and teams to leverage change and complexity for
competitive advantage

Coupled with low-code platforms, modeling tackles the challenges of modern
software engineering

Why modeling is useful
for developers and

business individuals?
Modeling and the use of model-driven architectures (MDA) are

beneficial for developers and the business domain alike. Let’s take a
look at its advantages over traditional manual coding.

BlackBelt is one of Hungary’s most dynamically growing software
engineering companies. The idea to connect the country’s best experts
with innovative and high-tech technology was conceived in 2013. The
number of employees grew ten-fold within a year, and our exceptional
team started to construct the JUDO platform in 2015 and started the
beta phase in the same year.

We began to offer our services and technology to foreign companies in
2016 when JUDO was introduced in a client environment. By 2017 our
organization matured, and we upgraded our whole enterprise. Last
year, in 2018, JUDO has been used on international projects, thus the
international market has greatly demonstrated the effectiveness of our
methodology.

Today, our superior agile technology enables us to work on numerous
international and domestic projects alike. Due to the convenient
time zone difference from Hungary’s location in Central Europe and
our English fluency, we can conveniently distribute our expertise
and programming solutions to you. BlackBelt is a smart choice for all
Western and Eastern European companies and developers who are
seeking a nearshore software engineering company to increase the
effectiveness of their business.

If you’re looking for a highly skilled and professional company to
outsource your software development to, get in touch with us now.

Welcome to Blackbelt,
a professional application
development company

Contact us

linkedin.com/company/blackbelt-technology-kft/

twitter.com/blackbelttech

facebook.com/BlackBeltTechnology

blackbelt.hu

https://judocodes.com

